
	Year 9 – Advanced Python Programming
Lesson 2 – Playlist
	

[bookmark: _a2gs1cbpzmc6]Dice battle
In this activity, you will develop a two-player dice game. One player is the attacker and the other is the defender.
Roll	The attacker rolls three dice. The defender rolls two dice.
Sort	Each player’s dice are sorted in descending order (highest first).
Check	The attacker’s highest roll is compared to the defender’s highest roll. The player with the smallest roll loses a point. If the two rolls are equal, the attacker loses the point.
Check	Then, the attacker’s second highest roll is compared to the defender’s second highest roll. The player with the smallest of the two loses a point. If the two rolls are equal, the attacker loses the point.
Examples
	
	highest
roll
	Second highest roll
	
	

	Attacker’s dice (sorted)
	[image:]
	[image:]
	[image:]
	

	Defender’s dice
(sorted)
	[image:]
	[image:]
	
	

	
	Defender loses 1 point
	Defender loses 1 point
	
	

	
	highest
roll
	Second highest roll
	
	

	Attacker’s dice
(sorted)
	[image:]
	[image:]
	[image:]
	

	Defender’s dice (sorted)
	[image:]
	[image:]
	
	

	
	Attacker loses 1 point
	Defender loses 1 point
	
	

 Task .
Step 1
Open this incomplete program on Bourne to Code, just below where you downloaded this file:
	1
2
3
4
5
6
7
8
9
10
11
1213
	from dice import dicerolls
attacker_points = 0
defender_points = 0
	attacker = dicerolls(3)
defender = dicerolls(2)
	 Roll the dice .

print("Players’ rolls")
print("Attacker:", attacker)
print("Defender:", defender)
	 .
 .
	 Sort players’ rolls .

print("Sorted")
print("Attacker:", attacker)
print("Defender:", defender)

Line 1 imports the dicerolls function from the dice module. This is not a standard Python component. It has been created specifically for this activity.
The dicerolls function returns a list containing a specified number of dice rolls. Three dice are rolled for the attacker (line 4) and two for the defender (line 5).
Step 2
Run the program 2-3 times, to see how different lists of dice rolls are generated each time. The lists will not be sorted yet.

[image:]
Step 3
Complete line 9 so that the attacker list, containing the attacker’s dice rolls, is sorted.
Note: There are a couple of alternative ways to achieve this. For one of them, you may even need an additional line of code.
Make sure you run the program and check that the attacker’s list of dice rolls is now indeed sorted.
Step 4
Complete line 10 so that the defender list, containing the defender’s dice rolls, is also sorted.
Make sure you run the program and check that the defender’s list of dice rolls is now indeed sorted.
	Example
	

	Note: This example illustrates how your program should work. The actual output of your program is generated randomly, so the numbers will be different every time you execute it.

	The program displays the items of the attacker and defender lists, containing their respective dice rolls.
	Players’ rolls
Attacker: [3, 2, 5]
Defender: [2, 5]

	The program displays the items of the attacker and defender lists again, after they have been sorted.
	Sorted
Attacker: [5, 3, 2]
Defender: [5, 2]

Step 5
Add an if-statement to your program that compares the highest dice roll in the attacker list to the highest dice roll in the defender list.
If the attacker wins, decrease defender_points by 1. Otherwise, decrease attacker_points by 1. Remember that if the highest rolls are equal, the defender wins.
Tip: Since the attacker and defender lists have been sorted, you know exactly which item in each list holds the highest dice roll.
Tip: if attacker[?] > defender[?] : – What number is missing from this if statement to check the first sorted dice? Remember what number we start counting from in Python (It’s not one!)

Step 6
Add another if-statement to your program that compares the second highest dice roll in the attacker list to the second highest dice roll in the defender list.
If the attacker wins, decrease defender_points by 1. Otherwise, decrease attacker_points by 1. Remember that if the highest rolls are equal, the defender wins.
Step 7
Add these lines at the end of your program to display how the players’ points have been modified after the game.
	+
+
	print("Attacker points:", attacker_points)
print("Defender points:", defender_points)

Make sure you run the program and check that the points displayed are consistent with the dice rolls.
	Example
	

	Note: This example illustrates how your program should work. The actual output of your program is generated randomly, so the numbers will be different every time you execute it.

	The program displays the items of the attacker and defender lists, containing their respective dice rolls.
	Players’ rolls
Attacker: [3, 2, 5]
Defender: [2, 5]

	The program displays the items of the attacker and defender lists again, after they have been sorted.
	Sorted
Attacker: [5, 3, 2]
Defender: [5, 2]

	The program displays each player’s points after the game.
	Attacker points: -1
Defender points: -1

 Explorer task . Again
Extend your program so that the attacker and defender start with an initial, positive number of points. The game is repeated for multiple rounds, for as long as both players have a positive number of points.
[bookmark: _GoBack]When the game ends, your program should check which of the two players still has some points remaining and declare them as the winner.

Page 2								
image5.png

image6.png

image7.png

image8.png

image9.png

image10.png
Modify list

list.reverse() Reverse the items ofthe .

e.g. valuesreversel)

list.sort() Sortthe items of the st
e.g. names.sort() Use the reverse=True argument to sort

in descending order.

e.g. numbers.sort(reverse=True)

image1.png

image2.png

image3.png

image4.png

