
THE LITTLE MAN COMPUTER

WHAT IS THE LITTLE MAN
COMPUTER?

Most modern computers have a processor which executes instructions and

memory which stores both the instructions and any data the processor

needs to use.

The computer has ways of getting data from the user and ways of giving the

results of any processing to the user as outputs.

Modern computers are very complex machines but we can work with a

simple version of a computer. This will teach us a great deal about how the

computer actually works, while keeping the details quite simple to deal with.

The Little Man Computer is a simulation of a modern computer system.

WHICH LMC?

There are many

implementations of the Little

Man Computer (LMC).

We will use the excellent web

based one that can be found

here:

http://peterhigginson.co.uk/LM

C/

http://peterhigginson.co.uk/LMC/

PARTS OF THE LMC

Assembly

instructions

RAM with 100

memory locations

Output

CPU with 4

registers

Input

PARTS OF THE CPU

CPU REGISTER FUNCTION

Accumulator
This stores data that is being used in calculations. It can

perform simple addition and subtraction.

Program Counter

This contains the memory address of the next instruction to

be loaded. This automatically ticks to the next memory

address when an instruction is loaded. It can be altered

during the running of the program depending on the state of

the accumulator.

Instruction Register
An Instruction Register to hold the top digit of the instruction

read from memory.

Address register
An Address Register to hold the bottom two digits of the

instruction read from memory.

Input
This registers allows the user to input numerical data to the

LMC.

Output This shows the data to output to the user.

HOW THE LMC WORKS

Modern computers work by fetching an instruction from the memory.
It then decodes the instruction so that it knows what to do. It then
executes the instruction, carrying out the commands, before starting
all over again.

This is called the Fetch-Decode-Execute cycle.

The LMC understands a set of instructions and know what to do
when these instructions are decoded.

The LMC only understands a very limited set of instructions to show
how a real processor works without becoming too complex. The list
of instructions we can use is known as an instruction set.

HOW THE LMC WORKS

The LMC will start to load the instruction from the memory

address in the program counter. When the LMC first loads

up this will set at zero.

This memory location needs to be an instruction and will be

dealt with as such.

When the data is loaded the program counter is

incremented to the next memory location.

LMC INSTRUCTION SET

The LMC processor understands 10 basic commands (plus

1 instruction to label data).

The LMC only understands these instructions in a numerical

form.

This can be difficult for us to program in so there is a set of

mnemonics we can use instead. This is known as assembly

language. This will be converted into the LMC code before

the program can run.

LMC INSTRUCTION SET

MNEMONIC

CODE
INSTRUCTION

NUMERIC

CODE
DESCRIPTION

ADD ADD 1xx

Add the value stored in mailbox xx to whatever value is currently on the accumulator (calculator).

Note: the contents of the mailbox are not changed, and the actions of the accumulator (calculator)

are not defined for add instructions that cause sums larger than 3 digits.

SUB SUBTRACT 2xx

Subtract the value stored in mailbox xx from whatever value is currently on the accumulator

(calculator).

Note: the contents of the mailbox are not changed, and the actions of the accumulator are not

defined for subtract instructions that cause negative results - however, a negative flag will be set so

that 8xx (BRP) can be used properly.

STA STORE 3xx

Store the contents of the accumulator in mailbox xx (destructive).

Note: the contents of the accumulator (calculator) are not changed (non-destructive), but contents of

mailbox are replaced regardless of what was in there (destructive)

LDA LOAD 5xx Load the value from mailbox xx (non-destructive) and enter it in the accumulator (destructive).

INP INPUT 901
Go to the INBOX, fetch the value from the user, and put it in the accumulator (calculator)

Note: this will overwrite whatever value was in the accumulator (destructive)

OUT OUTPUT 902
Copy the value from the accumulator (calculator) to the OUTBOX.

Note: the contents of the accumulator are not changed (non-destructive).

LMC INSTRUCTION SET

MNEMONIC

CODE
INSTRUCTION

NUMERIC

CODE
DESCRIPTION

BRA
BRANCH

(unconditional)
6xx

Set the program counter to the given address (value xx). That is, value xx will be the next instruction

executed.

BRZ
BRANCH IF ZERO

(conditional)
7xx

If the accumulator (calculator) contains the value 000, set the program counter to the value xx. Otherwise,

do nothing.

Note: since the program is stored in memory, data and program instructions all have the same

address/location format.

BRP

BRANCH IF

POSITIVE

(conditional)

8xx
If the accumulator (calculator) is 0 or positive, set the program counter to the value xx. Otherwise, do

nothing.

HLT HALT 0 Stop working.

DAT DATA

This is an assembler instruction which simply loads the value into the next available mailbox. DAT can also

be used in conjunction with labels to declare variables. For example, DAT 984 will store the value 984 into a

mailbox at the address of the DAT instruction.

EXAMPLES - INPUT & OUTPUT

This program simply asks

the user for an input and

then outputs what was input.

The program has been

assembled into RAM and

you can see the numeric

codes for the instructions in

the first three memory

locations.

USING MEMORY

This program asks the user to

input a number.

This is stored in a memory

location defined by the DAT

label.

A second number is asked for

and stored.

These numbers are then

loaded and output in order.

INP

STA FIRST

INP

STA SECOND

LDA FIRST

OUT

LDA SECOND

OUT

HLT

FIRST DAT

SECOND DAT

BIGGER

This program uses two branch commands

to alter the path of the program.

There is no greater than or less than

command so we simply subtract the second

number from the first.

If it is positive then the first number must

have been bigger so we branch if positive.

The two numbers could be the same

however so we need to check to see if the

result is zero. We branch if it is.

The biggest number is output or zero if they

are both the same.

INP

STA FIRST

INP

STA SECOND

SUB FIRST

BRP FIRSTBIG

LDA SECOND

OUT

HLT

FIRSTBIG BRZ SAME

LDA FIRST

OUT

HLT

SAME LDA ZERO

OUT

HLT

FIRST DAT

SECOND DAT

ZERO DAT 0

POINTS TO NOTE

The instruction set is very limited so you often need to come

up with a different way to perform things like multiplication or

comparing two numbers.

The LMC does not store decimals.

The LMC does not have a loop structure but you can use a

Branch Always command to redirect the code to an earlier

command.

HOW TO WRITE A LITTLE MAN
COMPUTER PROGRAM

Writing an LMC program can be quite a challenge. As the
instruction set is very limited we often need to perform what
seems to us to be a very simple task in an even simpler
way.

Using a Flow chart to help write the program is very helpful.

When the flow chart is created we can simply look at each
shape on the chart and think what instructions would we
need to have for that shape. These will often be no more
that a couple of lines of LMC code.

HOW TO WRITE A LITTLE MAN
COMPUTER PROGRAM

In flow charts there are 4 symbols that we commonly use.

SYMBOL MEANING LMC INSTUCTIONS

Start / Stop Start has no instruction but Stop is HLT.

Input / output

Any inputs will that need to be saved will be INP followed by an STA

command to store the value.

OUT is the output command. It may need to be

Process

This could be a DAT command where we see variables initialised (e.g.

counter = 0).

addition and subtraction commands fit into this.

A process such as X = X + Y would need to be done in the correct order.

So we would Load X, Add Y and then store the result as X. This would be

LDA X, ADD Y, STA X

Decision

There are only two instructions that can have two alternatives. Branch if

Positive and Branch if Zero. If the test is true then the program can branch

to another part of the program. If not the program carries on.

EXAMPLE - THE PROBLEM

We want a program to calculate

averages.

We want to be able to keep

entering values until we enter a

zero.

The average is then calculated

and displayed.

First thing - create a flow

chart to show what needs

to be done.

Be as detailed as you can

be.

Note any values you need
to remember.

These will be the variables.

In LMC code they will
become the DAT
commands.

Note if they have a start
value.

We have 4 variables

total DAT 0

count DAT 0

result DAT 0

num DAT

If we need to add on or

subtract a specific value we

need to be able to store

that too.

We need to be able to add

1 do we can do this by

having

one DAT 1

Now start at the top and write
down the commands for the
instructions for the flow chart.

Assigning values can be ignored
so the first command in Input
number

The LMC command is INP

If we need to store that we need
to follow this with a store
command and save it to memory
using the DAT label we created.

INP

STA num

Next we see if the user has entered

a zero.

We can use Branch Zero to do this.

If the accumulator is zero we will

jump to another section of the code.

We need to give this section a label.

I will call this section CALCULATE.

I will need to do that code later.

INP

STA num

BRZ CALCULATE

The next section of code happens if
num does NOT equal zero.

Now I need to add the num to the total.

I will load the total and then add the
num.

LDA total

ADD num

This then needs to be saved back as the
total.

STA total

INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

Now I need to add one to

the count.

So i need to load count and

then add one.

The result needs to be

saved as count

INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

The code now loops back to the Input

command.

We can use a Branch always

command to do this.

We need to label where we want the

BRA command to jump to.

I will call it LOOPTOP.

I need to add this label to the INP

command and use it in the BRA

command.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

Now we need to go back to

out CALCULATE code.

This code performs a

division.

LMC does not have a

divide command.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

We can perform a divide by
repeatedly subtracting the
count from the total until we
get to zero.

Keeping a count of how
many times we successfully
subtract the count will be the
same as dividing.

The result will store this
count.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

This code will run in a loop.

We need to load total and
then subtract the count.

We then need to see if the
count is below zero.

If it is not we will add one to
the result and then loop
around.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

So the first command is to
load the total and subtract the
count.

LDA Total

SUB count

Then we Branch if the result
is zero or higher, so we need
BRP in order to add one to
the result. I will give it the
label DIVIDE and deal with
that later.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

CALCULATE LDA total

SUB count

STA total

BRP DIVIDE

If the value in the

accumulator is negative

then the BRP does not run.

We now need to load the

result and output it to the

user.

Once we do that the

program is done.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

CALCULATE LDA total

SUB count

STA total

BRP DIVIDE

LDA RESULT

OUT

HLT

Now we need to go back to what
happens if the total - count is
positive.

Remember we jumped to a label
called DIVIDE.

We need to add one to the result
and then start the loop again.

We can use Branch always to jump
back to the top of our loop. The
loop already has a label, so we can
use that.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

CALCULATE LDA total

SUB count

STA total

BRP DIVIDE

LDA RESULT

OUT

HLT

DIVIDE LDA result

ADD one

STA result

BRA CALCULATE

All that remains is to

add the DAT

commands to the end

of our program.

LOOPTOP INP

STA num

BRZ CALCULATE

LDA total

ADD num

STA total

LDA count

ADD one

STA count

BRA LOOPTOP

CALCULATE LDA total

SUB count

STA total

BRP DIVIDE

LDA RESULT

OUT

HLT

DIVIDE LDA result

ADD one

STA result

BRA CALCULATE

total DAT 0

count DAT 0

num DAT

result DAT 0

one DAT 1

