:
-15)

g ey _
el ¥
3 ““ ’-“. i
oy 2y L AN

P —

£
=
= &
=

THE LITTLE MAN COMPUTER

WHAT IS THE LITTLE MAN
COMPUTER?

Most modern computers have a processor which executes instructions and
memory which stores both the instructions and any data the processor
needs to use.

The computer has ways of getting data from the user and ways of giving the
results of any processing to the user as outputs.

Modern computers are very complex machines but we can work with a
simple version of a computer. This will teach us a great deal about how the
computer actually works, while keeping the details quite simple to deal with.

The Little Man Computer is a simulation of a modern computer system.

WHICH LMC?

Assembly Language Code

IKP 00 IKP
STA 99 01 STA 99
IKP 02 IKP
ADD 99 03 ADD 99
ouT 04 ouT
HLT 05 HLT
/4 Cutput the sum of two
numbers
ASSEMBLE INTO RAM RUN STEP
RESET | LoAD| HELP|

PROGRAM
00 counTER

INSTRUCTION
REGISTER

ADDRESS
REGISTER

ACCUMULATOR

000

Livile Maa Compuien

T B R L e e)
1901 1 399 {f 901 |ff 199 1§ 902 f 000 {f 000 |f 000 000 f 000
10 111 (12 113 14/ 15 116 117 118 119
000 ff 000 {f 000 {ff 000 |f 00 f 000 {f oo | oo | 0oo f 000!
by Loy Lpb NFa 3a) Bet ad Lot by Lpb
000 ff 000 {f 000 {ff 000 |f 0oo f 0oo {f oo |f oo | ooo f 000!
o'y B! 50t 5 ek e de i a7t 3e Be
000 ff 000 {f 000 {ff 000 | 000 f 0o {f oo | oo | 000 f 000
400 41 42 43 44’145 46 47 48, 49
000 ff 000 {f 000 {ff 000 | 0oo f 0oo {f oo | ooo Jf ooo f 000!
50, ' 51, 52, ' 53',54' 55 56,57 '58, '59
000 ff 000 {f 000 {ff 000 | 00o f ooo {f oo |f oo | ooo f 000
60 1 61 62 63, 64 65 66 67 168 169
000 ff 000 {f 000 {ff 000 | 000 ff 0oo {f ooo | ooo | 0oo f 000
70/ 71 72 73 174 175 76 77 181 79
1000 ff 000 {f 000 {ff 000 |f ooo f ooo {f oo |f ooo | ooo f 000!
80 181 182 | 83| 84/ B85 186 187 188 189
000 ff 000 {f 000 {ff 000 |f 000 ff 0oo {f oo | ooo | 0oo f 000

90, ©1, 092 ©93 94 05 96, 97, 98, OO

RUN/STEP your program, SELECT, LOAD or edit program

OPTIONS ¥

There are many
Implementations of the Little
Man Computer (LMC).

We will use the excellent web
nased one that can be found
nere:
nttp://peterhigginson.co.uk/LM
@/

http://peterhigginson.co.uk/LMC/

PARTS OF THE LMC

Assembly

RAM with 100

instructions memory locations
Assembly Language Code il Livile Maa Compuies
= | of e R LR WP FAP T TN
e 02 Ive 901 i1 399 |ff 901 | 199 § 902 |ff 000 |f 000 f 000 |ff 000 |ff 000 |
prad " 10 111 12 ¢ 13 14 15 16 17 18 119
Ifﬂutpuilliheslmuftm ’ mmmmmmmmmm
mambers 20, '21, 'p2 ' 23" ,24',25 '3a,'27,'28, ' 20
000 |f 000 |f 000 |ff 000 i 000 |f 000 | 000 | 000 f 000 |f 000 |
CPU 30 31 32 33,'34,'35 38 37 38 39
o 000 f 000 J 000 oo f ooo oo looo f ooo oo Jroco
00 counTeER 40 41 42 43 44 145 46 47 48 49
000 |f 000 |f 000 il 000 § 000 | 000 f 000 | 000 f 000 |f 000
gggggggom 50 '51 '52 ' 53 ' 54' 55 ‘56 '57, '58 '59
ADDRESS 000 |ff 0oo |ff ooo ff ooo f§ ooo |ff ooo i ooo fff ooo i ooo ff ooo
REGISTER 60 61 62 63 64 65 66 &7 68 69
ACCUMULATOR 1000 | 000 | 0oo | 0oo | ooo i ooo i 0oo i 0oo If 000 Jf 000 | CPU with 4
000 700 71 %2 73 74 175 76 77 78 79 registers
000 |f 000 |f 000 |ff 000 | 000 | 000 | 000 | 000 f 000 |f 000
80 81 82 83 84' 85 86 87 88 1389
mmmmmmmmmmi
00, 91, 92 ©3 94 95, 96, 97, 98 99
000 |f 000 Jf 000 |jf 000 {ff 000 |f 000 | 000 |ff 000 ff 000 |f 000 Il)|
ASSEMBLE INTO RAM RUN| STEP|

RESET | LOAD | HELR U
Input

PARTS OF THE CPU

CPU REGISTER FUNCTION

This stores data that is being used in calculations. It can
perform simple addition and subtraction.

This contains the memory address of the next instruction to
be loaded. This automatically ticks to the next memory
Program Counter address when an instruction is loaded. It can be altered
during the running of the program depending on the state of
the accumulator.

Accumulator

An Instruction Register to hold the top digit of the instruction
read from memory.

An Address Register to hold the bottom two digits of the
Instruction read from memory.

This registers allows the user to input numerical data to the
LMC.

Instruction Register
Address register

Input

Ottt This shows the data to ottout to the tiser:

HOW THE LMC WORKS

Modern computers work by fetching an instruction from the memory.
It then decodes the instruction so that it knows what to do. It then
executes the instruction, carrying out the commands, before starting

all over again.
This is called the Fetch-Decode-Execute cycle.

The LMC understands a set of instructions and know what to do
when these Instructions are decoded.

The LMC only understands a very limited set of instructions to show
how a real processor works without becoming too complex. The list
of instructions we can use is known as an instruction set.

HOW THE LMC WORKS

The LMC will start to load the instruction from the memory
address In the program counter. When the LMC first loads
up this will set at zero.

This memory location needs to be an instruction and will be
dealt with as such.

When the data Is loaded the program counter Is
Incremented to the next memory location.

LMC INSTRUCTION SET

The LMC processor understands 10 basic commands (plus
1 instruction to label data).

The LMC only understands these instructions in a numerical
form.

This can be difficult for us to program in so there Is a set of
mnemonics we can use instead. This is known as assembly

language. This will be converted into the LMC code before
the program can run.

LMC INSTRUCTION SET

MNEMONIC
CODE

ADD

SuUB

STA

LDA

INP

ouT

INSTRUCTION

ADD

SUBTRACT

STORE

LOAD

INPUT

OUTPUT

NUMERIC
CODE

1xx

2XX

3XX

5xx

901

902

DESCRIPTION

Add the value stored in mailbox xx to whatever value is currently on the accumulator (calculator).
Note: the contents of the mailbox are not changed, and the actions of the accumulator (calculator)
are not defined for add instructions that cause sums larger than 3 digits.

Subtract the value stored in mailbox xx from whatever value is currently on the accumulator
(calculator).
Note: the contents of the mailbox are not changed, and the actions of the accumulator are not
defined for subtract instructions that cause negative results - however, a negative flag will be set so
that 8xx (BRP) can be used properly.

Store the contents of the accumulator in mailbox xx (destructive).
Note: the contents of the accumulator (calculator) are not changed (non-destructive), but contents of
mailbox are replaced regardless of what was in there (destructive)

Load the value from mailbox xx (non-destructive) and enter it in the accumulator (destructive).

Go to the INBOX, fetch the value from the user, and put it in the accumulator (calculator)
Note: this will overwrite whatever value was in the accumulator (destructive)

Copy the value from the accumulator (calculator) to the OUTBOX.
Note: the contents of the accumulator are not changed (non-destructive).

LMC INSTRUCTION SET

MNEMONIC NUMERIC

CODE INSTRUCTION CODE DESCRIPTION

BRA BRANCH 63X Set the program counter to the given address (value xx). That is, value xx will be the next instruction
(unconditional) executed.
If the accumulator (calculator) contains the value 000, set the program counter to the value xx. Otherwise,

BRZ BRANCH IF ZERO 70X do nothing.

(conditional) Note: since the program is stored in memory, data and program instructions all have the same

address/location format.

Eehclis If the accumulator (calculator) is O or positive, set the program counter to the value xx. Otherwise, do

BRP POSITIVE 8xx ’ : :
. nothing.

(conditional)

HLT HALT 0 Stop working.

This is an assembler instruction which simply loads the value into the next available mailbox. DAT can also
DAT DATA be used in conjunction with labels to declare variables. For example, DAT 984 will store the value 984 into a
mailbox at the address of the DAT instruction.

EXAMPLES - INPUT & OUTPUT

Assemhly Language Code £

I 00 IKP
ouT 01 ouT
HLT 02 HLT

L T:T This program simply asks
L o0 oo fooof ooo the user for an input and

o fio Jor o then outputs what was input.

000 Jff 000 |f 000 | 000
30 31 32 33

000 |f 000 |f 000 f 000

40 41 42 43

000 |f 000 |f 000 f 000

L T R R

000 | 000 | 000 |f 000

PROGRAM
00 counTER

IMSTRUCTIOM
REGISTER

ADDRESS
REGISTER

The program has been
heraleneiens assembled into RAM and
accuMuLaTor B [0oo Jf ooo Jf oo Jf 000

000 L abi a o' 3 you can see the numeric
000 |§ 000 | 000 | 000

@ LL L codes for the Iinstructions In
— §1 000 jf 000 Jf 000 Jf 000 :

00, o1 05 '3 the first three memory
000 |f 000 |l 000 f 000

locations.

RUN/STEP your prog;

ASSEMBLE INTO RAM | FlLINl STEF"| l |
RESET Loan| HELP| (sELECT %)

GPﬂDNS

USING MEMORY

INP
STA FIRST
INP
STA SECOND
LDA FIRST
OuT
LDA SECOND
OouT
HLT
FIRST DAT
SECOND DAT

This program asks the user to
Input a number.

This Is stored in a memory
location defined by the DAT
label.

A second number Is asked for
and stored.

These numbers are then
loaded and output in order.

BIGGER

INP

STA FIRST
INP

STA SECOND
SUB FIRST
BRP FIRSTBIG
LDA SECOND
OuT

HLT

IFIRSTBIG BRZ SAME
LDA FIRST
OuT

HLT

ISAME LDA ZERO
OuT

HLT

ERST DAT

ECOND DAT
ERO DATO

This program uses two branch commands
to alter the path of the program.

There is no greater than or less than
command so we simply subtract the second
number from the first.

If it is positive then the first number must
have been bigger so we branch if positive.

The two numbers could be the same
however so we need to check to see if the
result is zero. We branch if it is.

The biggest number is output or zero if they
are both the same.

POINTS TO NOTE

The Instruction set Is very limited so you often need to come
up with a different way to perform things like multiplication or
comparing two numbers.

The LMC does not store decimals.

The LMC does not have a loop structure but you can use a
Branch Always command to redirect the code to an earlier
command.

HOW TO WRITE A LITTLE MAN
COMPUTER PROGRAM

Writing an LMC program can be quite a challenge. As the
Instruction set is very limited we often need to perform what
seems to us to be a very simple task in an even simpler
way.

Using a Flow chart to help write the program is very helpful.

When the flow chart is created we can simply look at each
shape on the chart and think what instructions would we
need to have for that shape. These will often be no more
that a couple of lines of LMC code.

HOW TO WRITE A LITTLE MAN
COMPUTER PROGRAM

In flow charts there are 4 symbols that we commonly use.

SYMBOL MEANING LMC INSTUCTIONS

Start / Stop Start has no instruction but Stop is HLT.

Any inputs will that need to be saved will be INP followed by an STA
Input / output command to store the value.
OUT is the output command. It may need to be

This could be a DAT command where we see variables initialised (e.g.
counter = 0).
addition and subtraction commands fit into this.
A process such as X = X + Y would need to be done in the correct order.
So we would Load X, Add Y and then store the result as X. This would be
LDA X, ADD Y, STA X

Process

There are only two instructions that can have two alternatives. Branch if
Decision Positive and Branch if Zero. If the test is true then the program can branch
to another part of the program. If not the program carries on.

it
G
\ 4

EXAMPLE - THE PROBLEM

P

most of you are average.

We want a program to calculate
averages.

We want to be able to keep
entering values until we enter a
ZEero.

The average Is then calculated
and displayed.

First thing - create a flow
chart to show what needs
to be done.

Be as detailed as you can
be.

Start

total =0

count=0

h 4
/Input num/

Yes

result = total /
count

Output
result

End

count = count
+ 1

A

total = total +
num

Note any values you need
to remember.

These will be the variables.

In LMC code they will
become the DAT
commands.

Note If they have a start
value.

Start

total =0

count=0

h 4
/Input num/
-3

Yes

result = total /
count

Output
result

End

count = count
+ 1

A

total = total +
num

We have 4 variables

total DAT O

count DAT O

result DAT O

num DAT

Start

total =0

count=0

h J

/Input num/

Yes

result = total /

count

Output
result

HH"“'--.._,

End

count = count
+ 1

A

total = total +
num

If we need to add on or count = 0

subtract a specific value we Y

need to be able to store
that too.

total = total +
num

We need to be able to add
1 do we can do this by
having

one DAT 1

Now start at the top and write
down the commands for the
Instructions for the flow chart.
INP

Assigning values can be ignored STAnum
so the first command in Input
number

The LMC command is INP

If we need to store that we need
to follow this with a store
command and save it to memory
using the DAT label we created.

Start

total =0

count=0

h 4
/Input num/

Yes

result = total /

count

Output
result

End

count = count
+ 1

A

total = total +
num

Start

total =0

Next we see If the user has entered count = 0
a ZerO count = count
INP ! T
. STA num /Input num/
We can use Branch Zero to do this. BRZ CALCULATE
If the accumulator is zero we will 4@ =
jump to another section of the code. Yes
We need to give this section a label. ot
| will call this section CALCULATE. l

Output
| will need to do that code later. / rosul /

End

The next section of code happens if

num does NOT equal zero. INP
STA num
Now | need to add the num to the total. BRZ CALCULATE
| will load the total and then add the LDA total
num. ADD num
STA total
LDA total
ADD num

This then needs to be saved back as the
total.

STA total

Start

total =0

count=0

h 4
/Input num/

Yes

result = total /

count

Output
result

End

count = count
+ 1

A

total = total +
num

INP
STA num

BRZ CALCULATE
Now | nheed to add one to L DA total

the count. ADD num

STA total

: LDA count
So I needto load countand o5 e

then add one. STA count

The result needs to be
saved as count

Start

total =0

count=0

h 4
/Input num/
3

Yes

result = total /

count

Output
result

End

count = count
+ 1

A
;
|

total = total +
num

LOOPTOP INP

The code now loops back to the Input STA num
command. BRZ CALCULATE

LDA total
We can use a Branch always ADD num
command to do this. STA total

LDA count
We need to label where we want the ADD one
BRA command to jump to. STA count

BRA LOOPTOP
| will call it LOOPTOP.

| need to add this label to the INP
command and use it in the BRA
command.

Start

total =0

count=0

h 4
/Input num/

Yes

result = total /

count

Output
result

End

count = count
+ 1

1

_| total = total +

num

LOOPTOP INP
STA num
BRZ CALCULATE

Now we need to go backto LDAtotal

out CALCULATE code. ADD num
STA total
LDA count
This code performs a ADD one
division. STA count

BRA LOOPTOP

LMC does not have a
divide command.

Start

total =0

count=0

Y
/Input num/

Yes

result = total /

count

Output
result

count = count
+ 1

total = total +
num

LOOPTOP INP

We can perform a divide by Sl
repeatedly subtracting the BRZLCDAAL%tJa'IATE
count from the total until we ADD num
get to zero. STA total
LDA count
Keeping a count of how ADD one
many times we successfully STA count

subtract the count will be the BRALOOPTOP
same as dividing.

The result will store this
count.

Start

total =0

count=0

h 4
/Input num/

Yes

result = total /
count

Output
result

count = count
+ 1

total = total +
num

LOOPTOP INP

: ; . STA num
This code will run in a loop. grz caLCULATE

LDA total

We need to load total and ADD num

then subtract the count. STA total

LDA count

. ADD one

We then need to see If the STA count

count is below zero. BRA LOOPTOP

If it Is not we will add one to
the result and then loop
around.

Start

total =0

count=0

h 4
/Input num/

Yes

result = total /
count

Output
result

count = count
+ 1

total = total +
num

So the first command Is to
load the total and subtract the
count.

LDA Total
SUB count

Then we Branch if the result
IS zero or higher, so we need
BRP In order to add one to
the result. | will give it the
label DIVIDE and deal with
that later.

LOOPTOP INP
STA num
BRZ CALCULATE
LDA total
ADD num
STA total
LDA count
ADD one
STA count
BRA LOOPTOP
CALCULATE LDA total
SUB count
STA total
BRP DIVIDE

Start

total =0

count=0

h 4
/Input num/
S

Yes

result = total /

count

Output
result

count = count
+ 1

total = total +
num

Start

LOOPTOP INP Y

STA num total =0
BRZ CALCULATE l

If the value In the LDA total e
accumulator is negative e oo = o
then the BRP does not run. [pa count // ‘

ADD one

STA count No total = total +
We now need to I_oad] S el ek @
result and OUtpUt It to the CALCULATE LDA total -
user. SUB count result = total /

STA total ll

BRP DIVIDE

Once we do that the | DA RESULT /mtp

program is done. OuUT

LOOPTOP INP Start

STA num
BRZ CALCULATE v
LDA total total =0
ADD num l
Now we need to go back to what STA total
. . count=0
happens If the total - count is LDA count —
positive. ADD one - iy
_ STA count nput num |
Remember we jumped to a label BRA LOOPTOP /I " /
called DIVIDE. CALCULATE LDA total @ - X A—
SUB count fuld
We need to add one to the result STA total Yes
and then start the loop again.
P ag BRP DIVIDE ——
count
We can use Branch always to jump s SE_E LI l

back to the top of our loop. The
loop already has a label, so we can ALT / o

use that. DIVIDE LDA result
ADD one b
STA result e

BRA CALCULATE

All that remains Is to

add the DAT

commands to the end

of our program.

LOOPTOP INP
STA num
BRZ CALCULATE
LDA total
ADD num
STA total
LDA count
ADD one
STA count
BRA LOOPTOP
CALCULATE LDA total
SUB count
STA total
BRP DIVIDE
LDA RESULT
OuT
HLT
DIVIDE LDA result
ADD one
STA result
BRA CALCULATE
total DAT O
count DAT O
num DAT
result DAT O
one DAT 1

Start

total =0

count=0

h 4
/Input num/
S

Yes

result = total /
count

Output
result

End

count = count
+ 1

A

total = total +
num

