
 

Teaching guide: Pseudo-code 

The pseudo-code described below is provided to assist students preparing for 

their AQA GCSE Computer Science examination (8520). 

In all assessment material, AQA will use a consistent style of pseudo-code 

shown. This will ensure that, given sufficient preparation, candidates will 

understand the syntax of the pseudo-code easily. It is not the intention that 

candidates should use this style of pseudo-code in their own work (NEA or 

written assessments), although they are free to do so. The only direction to 

candidates when answering questions or describing algorithms in pseudo-code is 

that their code is clear and consistent. 

This document may be updated as required and the latest version will always be 

available on our website. Updates will not be made mid-year unless an error is 

discovered that must be corrected. If this happens centres will be notified of the 

changes. Ordinary updates will be made over the summer period with the new 

version for the following 12 months posted on our website at the start of the 

academic year, if any updates were made. 

The document is not confidential and can be freely shared with students. 

General Syntax 

 IntExp, RealExp, BoolExp, CharExp and StringExp means any 

expression which can be evaluated to an integer, real, Boolean, character or 

string respectively. 

 Exp means any expression 

 Emboldened pseudo-code is used to indicate the keywords/operators. 

 Exam paper questions will assume that indexing for arrays and strings starts at 

0 unless specifically stated otherwise. 

Variables and Constants  

Variable 

assignment 

Identifier ← Exp 

a ← 3 

b ← a + 1 

c ← c – 2 

Constant 

assignment 

constant 

IDENTIFIER ← Exp 

constant PI ← 

3.141 

constant 

CLASS_SIZE ← 23 

 



Arithmetic Operations 

Standard 

arithmetic 

operations 

+ 

- 

* 

/ 

Standard use using 

brackets to make 

precedence obvious. The 

/ symbol is used instead 

of ÷ for division (for 

integer division use DIV.) 

Integer division 
IntExp DIV IntExp 

9 DIV 5 evaluates to 1 

5 DIV 2 evaluates to 2 

8 DIV 4 evaluates to 2 

Modulus 

operator 

IntExp MOD IntExp 

9 MOD 5 evaluates to 4 

5 MOD 2 evaluates to 1 

8 MOD 4 evaluates to 0 

 

Relational Operators for types that can be clearly ordered 

Less than 

Exp < Exp 4 < 6 

Greater than 

Exp > Exp 4.1 > 4.0 

Equal to 

Exp = Exp 3 = 3 

Not equal to 

Exp ≠ Exp True ≠ False 

Less than or 

equal to 

Exp ≤ Exp 
3 ≤ 4 

4 ≤ 4 

Greater than or 

equal to 

Exp ≥ Exp 
4 ≥ 3 

4.5 ≥ 4.5 

 

Boolean Operations 

Logical AND 

BoolExp AND 

BoolExp 

(3 = 3) AND (3 ≤ 4) 

Logical OR 

BoolExp OR 

BoolExp 

(x < 1) OR (x > 9) 

Logical NOT 

NOT BoolExp NOT (another_go = 

False) 

 

Condition-controlled Iteration 

Repeat-until 

(repeat the 

statements until 

REPEAT 

   # statements 

here 

a ← 1 

REPEAT 

   OUTPUT a 



the Boolean 

expression is 

True) 

UNTIL BoolExp    a ← a + 1 

UNTIL a = 4 

# will output 1, 

2, 3 

    

While (while the 

Boolean 

expression is 

True, repeat the 

statements) 

WHILE BoolExp 

   # statements 

here 

ENDWHILE 

a ← 1 

WHILE a < 4 

   OUTPUT a 

   a ← a + 1 

ENDWHILE 

# will output 1, 

2, 3 

 

Count-controlled Iteration 

For 

FOR Identifier ← 

IntExp TO IntExp 

   # statements here 

ENDFOR 

FOR a ← 1 TO 3 

   OUTPUT a 

ENDFOR 

# will output 1, 

2, 3 

 

Selection 

If 

IF BoolExp THEN 

   # statements 

here 

ENDIF 

a ← 1 

IF (a MOD 2) = 0 

THEN 

   OUTPUT 'even' 

ENDIF 

If-else 

IF BoolExp THEN 

   # statements 

here 

ELSE 

   # statements 

here 

ENDIF 

a ← 1 

IF (a MOD 2) = 0 

THEN 

   OUTPUT 'even' 

ELSE 

   OUTPUT 'odd' 

ENDIF 

Else-if 

IF BoolExp THEN 

   # statements 

here 

ELSE IF BoolExp 

THEN 

   # statements 

here 

# possibly more 

ELSE IFs 

ELSE 

   # statements 

here 

ENDIF 

a ← 1 

IF (a MOD 4) = 0 

THEN 

   OUTPUT 

'multiple of 4' 

ELSE IF (a MOD 4) 

= 1 THEN 

   OUTPUT 'leaves 

a remainder of 1' 

ELSE IF (a MOD 4) 

= 2 THEN 

   OUTPUT 'leaves 

a remainder of 2' 

ELSE 



   OUTPUT 'leaves 

a remainder of 3' 

ENDIF 

 

   

Arrays 

Assignment 

Identifier ← [Exp, Exp,…, 

Exp] 

primes ← [2, 3, 

5, 7, 11, 13] 

Accessing 

an element 

Identifier[IntExp] 

primes[0] 

# evaluates to 

2 (questions on 

exam 

# papers will 

start indexing 

at  

# 0 unless 

specifically 

stated  

# otherwise)  

Updating an 

element 

Identifier[IntExp] ← Exp 

primes[5] ← 17 

# array is now 

[2,3,5,7,11,17]  

Accessing 

an element 

in a two-

dimensional 

array 

Identifier[IntExp][IntExp] 

tables ← [ [1, 

2, 3], 

           [2, 

4, 6], 

           [3, 

6, 9], 

           [4, 

8, 12] ] 

tables[3][1] 

# evaluates to 

8 as second 

element 

# (with index 

1) of fourth 

array  

# (with index 

3) in tables is 

8 

Updating an 

element in 

a two-

dimensional 

array 

Identifier[IntExp][IntExp] 

← Exp 

tables[3][1] ← 

16 

# tables is now 

#[ [1, 2, 3], 

#  [2, 4, 6], 

#  [3, 6, 9], 

#  [4, 16, 12] 

] 



Array 

length 

LEN(Identifier) 

LEN(primes) 

# evaluates to 

6 using example 

above 

 

LEN(tables) 

# evaluates to 

4 using example 

above 

 

LEN(tables[0]) 

# evaluates to 

3 using example 

above 

 

Subroutines 

Subroutine 

definition 

SUBROUTINE 

Identifier(parameters) 

   # statements here 

ENDSUBROUTINE 

SUBROUTINE 

show_add(a, b) 

   result ← a + 

b 

   OUTPUT 

result 

ENDSUBROUTINE 

 

SUBROUTINE 

say_hi() 

   OUTPUT 'hi' 

ENDSUBROUTINE 

Subroutine 

return 

value 

RETURN Exp 

SUBROUTINE 

add(a, b) 

   result ← a + 

b 

   RETURN 

result 

ENDSUBROUTINE    

Calling a 

subroutine 

Identifier(parameters) 

show_add(2, 3) 

answer ← add(2, 

3) 

 

 

String Handling 

String length 
LEN(StringExp) 

LEN('computer 

science') 

# evaluates to 16 

(including space) 

Position of a 

POSITION(StringExp, 

CharExp) 

POSITION('computer 

science', 'm') 



character # evaluates to 2 

(as with arrays, 

# exam papers will 

start indexing 

# at 0 unless 

specifically stated 

# otherwise)   

Substring (the 

substring is 

created by the 

first 

parameter 

indicating the 

start position 

within the 

string, the 

second 

parameter 

indicating the 

final position 

within the 

string and the 

third 

parameter 

being the 

string itself). 

SUBSTRING(IntExp, 

IntExp, StringExp) 

SUBSTRING(2, 9, 

'computer science') 

# evaluates to 

'mputer s' 

Concatenation 

StringExp + 

StringExp 

'computer' + 

'science' 

# evaluates to 

'computerscience' 

 

String and Character Conversion 

Convertin

g string 

to integer 

STRING_TO_INT(StringExp

) 

STRING_TO_INT('16') 

# evaluates to the 

integer 16 

Convertin

g string 

to real 

STRING_TO_REAL(StringEx

p) 

STRING_TO_REAL('16.3

') 

# evaluates to the 

real 16.3 

Convertin

g integer 

to string 

INT_TO_STRING(IntExp) 

INT_TO_STRING(16) 

# evaluates to the 

string '16' 

Convertin

g real to 

REAL_TO_STRING(RealExp) 

REAL_TO_STRING(16.3) 

# evaluates to the 

string '16.3' 



string 

Convertin

g 

character 

to 

character 

code 

CHAR_TO_CODE(CharExp) 

CHAR_TO_CODE('a') 

# evaluates to 97 

using 

# ASCII/Unicode 

Convertin

g 

character 

code to 

character 

CODE_TO_CHAR(IntExp) 

CODE_TO_CHAR(97) 

# evaluates to 'a' 

using 

# ASCII/Unicode 

 

Input/Output 

User input 

USERINPUT a ← USERINPUT 

Output 

OUTPUT StringExp OUTPUT a 

 

Random Number Generation 

Random 

integer 

generation 

(between two 

integers 

inclusively) 

RANDOM_INT(IntExp, 

IntExp) 

RANDOM_INT(3, 5) 

# will randomly 

generate 3, 4 or 5 

 

Comments 

Single line 

comments 

# comment  

Multi-line 

comments 

# comment 

# comment and so on 

 

 




